Lightweight Methods for Developing Pedagogical Content
Knowledge for HCI

Eliane S. Wiese

eliane.wiese@utah.edu
University of Utah
Salt Lake City, Utah, USA

Marina Kogan
kogan@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

ABSTRACT

An Unsolved Challenge in HCI education is developing pedagogi-
cal content knowledge (PCK) for teaching HCI and other courses
on human-centered computing. As a complement to rigorous and
intensive research methods for finding and validating PCK, we
propose quick, lightweight methods focused on self-reflection and
instructional design. We present our findings both as PCK that
might benefit other instructors and as a demonstration of the use-
fulness of lightweight methods. We hope this work encourages
others to reflect on and share PCK from their own teaching, which
more rigorous methods can then validate.

ACM Reference Format:

Eliane S. Wiese, Jason Wiese, Marina Kogan, and Joshua Dawson. 2022.
Lightweight Methods for Developing Pedagogical Content Knowledge for
HCL In EduCHI’22: 4th Annual Symposium on HCI Education, April 30-May
12022, New Orleans, LA, USA. ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION: WHY PCK FOR HCI?

Pedagogical Content Knowledge (PCK) is understanding how to
teach a specific subject to specific learners [11]. PCK is distinct from
expertise in the content and from general pedagogical practices.
PCK is specific to the discipline and includes anticipating student
misconceptions and knowing what teaching strategies are likely to
be effective (or not) [11]. All disciplines need PCK, and Oleson et
al. called for developing more of it for HCI [9]. As people who are
in HCI because we love it, it can be hard to get into the mindset of
a student who doesn’t. PCK helps us bridge that gap. As a commu-
nity, we can benefit from lightweight methods that help us identify
PCK and communication strategies that help us share our findings.
Difficulty in communicating PCK is that students’ struggles may
not make sense to an instructor who hasn’t encountered them first
hand. For example, one instructor, such as J. Wiese (second author),
might say, “students don’t understand the difference between a
problem and a solution.” A new instructor, such as E. Wiese (first
author), may have no conception of how students could confuse

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EduCHI'22, April 30-May 1 2022, New Orleans, LA, USA

© 2022 Copyright held by the owner/author(s).

Jason Wiese
wiese@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Joshua Dawson
joshua.dawson@milsci.utah.edu
University of Utah
Salt Lake City, Utah, USA

these two things. While E. Wiese was warned about it, she could
not create effective instruction to counteract it because the mis-
conception was so baffling. After a semester of teaching, E. Wiese
agreed that this was an excellent characterization of students’ diffi-
culties. However, as a community, it would be useful to have ways
to communicate these kinds of ideas in precise and actionable ways
that new instructors can understand without having to live through
them. This paper presents lightweight methods for HCI instructors
to develop and share PCK, with examples of the PCK that we have
generated through these methods.

2 METHOD: YOU CAN TRY THIS AT HOME

As a community, we can and should study PCK systematically and
rigorously by analyzing students’ work, surveying and interviewing
a broad range of instructors, and closing the loop by testing the
effectiveness of instruction specifically designed around that PCK.
And as a complement to those rigorous, in-depth, and time-intensive
methods, we should also explore ways to develop PCK casually,
self-reflectively, and with our colleagues.

E. Wiese, J. Wiese, and Kogan (the first three authors) have
collectively taught 6 semesters of HCI at the same institution over
6 years, within a CS department housed in a college of engineering.
Dawson (the fourth author) was a TA for one of those semesters.
Our HCI curriculum is modeled after CSE 440 Introduction to HCI
from the University of Washington [3]. The centerpiece of the
course is a semester-long group project, in which students work
in teams of 3-5 to: identify a topic, conduct contextual inquiries,
define a human-centered problem, conduct a task analysis, ideate,
sketch, and storyboard potential solutions, create an initial paper
prototype, and refine the prototype through rounds of user testing
and inspection-based methods. The final prototype is a digital mock-
up. The course does not involve programming. Our students are all
CS majors, and course enrollments for the past 6 offerings were 49,
14, 41, 51, 66, and 68, with approximately one TA per 25 students.

We three instructors began looking for PCK by meeting together
and asking, “Why is it so hard to teach HCI?" Some healthy venting
ensued. It was validating to see that our difficulties were not unique.
After feeling better that we were not alone, we started asking each
other for more details describing the issues and what evidence
we had that these things were problems for students. We looked
for groupings for the problems and tried to identify what missing

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

principles or perspectives might account for these problems. We
present two broad categories below. Attitudes and Perspectives refer
to students’ general approach to the topic, including what they
believe to be knowable and how to determine that something is
true. Students may not be aware that they hold a particular attitude
or perspective, let alone recognize how it can affect their learning.
As instructors, we see evidence of this across all topics within the
course. The second category, Knowledge and Skills, refers to gaps
and misconceptions that pertain to specific methods or topics. As
the most recent instructor, E. Wiese describes the teaching strategies
used to address specific misconceptions.

3 ATTITUDES AND PERSPECTIVES

As instructors and HCI researchers, we see HCI primarily as a per-
spective. While HCI methods, theories, and findings are important,
the main value we identify is in HCI as a worldview. For us, HCI
is about understanding problems before jumping to solutions; ap-
preciating both the strengths and the limitations of human beings;
humbly looking to our users for insight into their experiences; and
valuing the design process as a way to improve our thinking. When
we see HCI primarily as a perspective, it is not surprising that the
attitudes that students bring to class have a huge impact on their
learning. Unhelpful attitudes include: (1) HCI is easy, (2) HCI is all
busywork, (3) only objective data is valid, (4) writing is not part of
CS, (5) HCI is about implementing interfaces.

The most salient student misconceptions are in their attitudes
about HCI work. On the one hand, students anticipate that the
course should be easy because it does not involve programming.
This portrays an attitude that the most difficult (and most impor-
tant) part of design is implementation. While instructors can em-
phasize the workload expectations of the course, both in hours per
week and in required deliverables throughout the semester, stu-
dents still believe that the class should be easy. The incongruence
between thinking that the class should be easy but finding that
it is time-consuming creates a second misconception: HCI work
is “busywork”. That is, assignments are interpreted not as authen-
tic opportunities to practice HCI methods but as a way for the
instructor to keep students occupied.

We believe both of these attitudes — HCI should be easy, and
that it’s all busywork — come from an epistemological mismatch.
Whether they realize it or not, our engineering students are steeped
in positivist epistemology, which posits that only objective, pre-
cisely measurable, and quantifiable data are a valid basis for knowl-
edge. HCI requires an interpretivist perspective, acknowledging
that the designer actively creates knowledge through subjective
interpretation rather than simply recording facts as an objective
observer. In many CS classes, students can track their progress and
evaluate their work with objective measures, such as test cases or
correctness of calculations. The expertise required for CS classes
is rightly seen as specialized knowledge. However, students don’t
always see HCI as requiring specialized knowledge but rather “com-
mon sense.” These perspectives create a vicious confluence: details
of the methods are seen as unimportant because HCI only requires
“common sense”; when students do not apply the methods correctly,
they cannot tell because they lack objective benchmarks; students

Eliane S. Wiese, Jason Wiese, Marina Kogan, and Joshua Dawson

reject the instructor’s critiques because, again, they are not objec-
tive; and in the end, the students conclude that the entire enterprise
is meaningless busywork. The subjective, qualitative, open-ended,
and iterative aspects of the design-centered HCI process are all
incongruent with positivist conceptions of knowledge production
and therefore are undervalued and resisted.

Moreover, many of the deliverables in our HCI course are in
the form of writing or oral presentations. Many of our students
strongly believe that communication, especially writing, is not part
of computing. While engineering students may see the necessity
of communicating about their work (through, e.g., code comments
and documentation) the writing is often seen as a burdensome
additional task that is done after the “real” work is completed.
In HCI, writing is not just used for communication but also as
a way to generate knowledge. The acts of drafting, editing, and
revising serve as supports for reflection on the design process and
create foundations for interpretivist insight. However, this form of
knowledge production is not valued under positivism.

Finally, many students believe that HCI is interface implemen-
tation. Thus, students often come to class with a specific idea for
a technology they want to design and assume that the course will
equip them with strategies to ensure usability. Again, there is an
epistemological mismatch: because HCI examines technology in
context and takes into account differences among users and their
goals, there cannot exist a simple set of interface design rules that
will guarantee usability. However, a more vital mismatch is in what
kind of knowledge is viewed as important. As a field, HCI values
our understanding of problems over designing a slick interface.
In contrast, students often don’t appreciate the importance of un-
derstanding their users and their contexts, in many cases because
the student is content to design based on their own preferences.
Students see themselves as experienced users of technology and
therefore as valid representative sources of data for design. Simply
explaining to students that they are not their users is not sufficient
to dislodge this attitude. It is not just that the interpretivist stance
— of trying to understand the perspective of their users by getting
into “their shoes” — is unfamiliar and difficult. Additionally, stu-
dents cannot grasp the value of exploring a problem context if they
believe they already understand it based on their own experiences.

3.1 We can help students adopt new
perspectives

Instructors can change student attitudes [2]. How to do it in HCI is
an open question. We have some ideas to start.

3.1.1 Share broad views of HCI. E. Wiese began one semester by
assigning students to watch two keynotes: Amy Ko at Koli Calling
2019 [7] and Ruha Benjamin at CHI 2021 [1]. Both keynotes examine
the values that technology enacts, the ways that our values and
biases affect how we define problems, and ways that technology
can cause harm when the designer’s framing of a problem doesn’t
match their users’ contexts. E. Wiese hoped that these keynotes
would expand students’ views of what HCI is but did not have a
way to assess if this occurred.

Lightweight Methods for Developing Pedagogical Content Knowledge for HCI

3.1.2 Explicitly contrast quantitative and qualitative data. An idea
we haven’t tried yet is to start with a topic that students are famil-
iar with, but is difficult to characterize quantitatively, such as how
warm and welcoming a classroom environment is. Students could
consider survey results that present likert-scale ratings on different
aspects of course climate, from different hypothetical classes. Stu-
dents will see that the survey data alone could plausibly support
several contradictory interpretations. In contrast, notes from hypo-
thetical observations or interviews will be much more informative.
This activity may help students see the limits of numerical data and
may encourage them to try a new epistemology.

3.1.3 Provide examples of solving the wrong problem. Students
might change their perspectives slowly by seeing the same princi-
ples across multiple contexts. E. Wiese used ProctorU [10] as such
an example in one offering. ProctorU is one of many systems that
claim to prevent and detect cheating on remote exams. To prevent
a test-taker from cheating, these systems lock the browser, record
video, and even analyze gaze patterns to infer usage of off-screen
resources. These systems invade student privacy and cause undue
stress for students [5]. They are an answer to the question, "how
can we be sure students are not cheating on remote exams?" If the
problem were framed differently, such as "how can we assess stu-
dent’s learning in a valid way?", one could imagine technology that
not only looks different but solves a fundamentally more important
problem. Students appreciated that example and wanted more.

As a community, we could gather and share examples that il-
lustrate different aspects of solving the wrong problem. Another
example, which E. Wiese plans to try next semester, is the story
of an 8-year-old who wanted to skip remote school during the
pandemic [8]. She would lock herself out of her Zoom account
by repeatedly entering the wrong password, triggering a timeout
period. When an adult would try to log her back in with the right
password, it wouldn’t work until the timeout was over (Zoom’s
inaccurate error messages didn’t help). Zoom’s security features
were designed to protect against a malicious attacker, not for users
who want to get out of meetings. By illustrating the difference
between problems that technology solves and problems that are
important to a community of users, examples like these might help
students value an HCI perspective on problem-framing.

3.2 Perspectives interact with knowledge and
skills

Attitudes matter for HCI methods. It is difficult to successfully
ideate or create a meaningful affinity diagram without trusting the
method and taking it seriously. In addition to holding attitudes that
conflict with HCI perspectives, students are generally unaware of
how their attitudes affect their design process. Students who view
the design process as busywork are likely to have self-fulfilling
prophecies. Unhelpful attitudes may make it harder for students
to use the methods effectively and may reduce their motivation
for learning them well. And, students who struggle in learning the
methods may dig in more strongly to unhelpful attitudes. Therefore,
PCK that helps us teach individual content areas more effectively
is also crucial.

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

4 KNOWLEDGE AND SKILLS

This section explores individual content areas. Our goal is to con-
tribute to our EQuCHI community by starting to identify our own
challenges in teaching specific HCI concepts and methods, and by
sharing ideas for addressing them.

4.1 Problem vs. Solution

HCI problem-framing centers on users’ goals, resources, and work-
flows. A common student mistake is to frame a problem around a
technical solution, of the form “users need my technical solution,
and the problem is that they don’t have it yet” For example, in one
offering, E. Wiese assigned half of the student groups to design
something that would support undergraduate research. One com-
mon idea was to create a website where faculty could post research
opportunities and interested students could apply. Students would
explain the problem by saying “there is no centralized website
where students and faculty can connect for research” And while
this statement is true, it does not describe users’ needs, constraints,
and conflicts. Shallow characterizations of the problem framed it
as a simple lack of communication, concealing the nuances that
make this problem complex, including, e.g., the differences between
student and faculty views of research and the challenges of predict-
ing a good fit between a student and a project. Students struggle
to understand the difference between a human-centered problem
framing and one centered on technology. Students may also start
with a solution in mind, and then attempt to reverse engineer a
problem to match. The next year, E. Wiese tried to explain the
difference between a problem and a solution with an excerpt from
Braiding Sweetgrass [6, p. 181]:

I once met an engineering student visiting from Eu-
rope who told me excitedly about going ricing in Min-
nesota with his friend’s Ojibwe family. He was eager
to experience a bit of Native American culture. They
were on the lake by dawn and all day long they poled
through the rice beds, knocking the ripe seed into the
canoe. “It didn’t take long to collect quite a bit,” he
reported, “but it’s not very efficient. At least half of
the rice just falls in the water and they didn’t seem to
care. It’s wasted” As a gesture of thanks to his hosts,
a traditional ricing family, he offered to design a grain
capture system that could be attached to the gunwales
of their canoes. He sketched it out for them, showing
how his technique could get 85 percent more rice.

After reading this story, E. Wiese asked the class what problem
was being solved. Students noted that the problem was waste, or
a lack of efficiency. In response, another student pointed out that
there was no evidence in the story that these issues were perceived
as problems by the target users. E. Wiese then continued with the
hosts’ response [6, p. 181-182]:

“Yes, we could get more that way. But it’s got to seed
itself for next year. And what we leave behind is not
wasted. You know, we’re not the only ones who like
rice. Do you think the ducks would stop here if we
took it all?” Our teachings tell us to never take more
than half.

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

While this example was helpful, students may benefit more from
multiple examples. Instruction and practice might take the form
of analyzing a set of contrasting cases, where the same problem is
framed in different ways. For one kind of practice, students might
simply identify which framing is human-centered. For another
kind of practice, students could critique a system-centered problem
framing by making explicit what problem the system is solving
and proposing lines of inquiry that could help determine if that
problem framing is accurate.

4.2 Task Analysis

A shallow understanding of task analysis can quickly turn it into
busywork: creating a list of obvious actions a user needs to accom-
plish. “Obvious” meaning that the list could be generated with a
superficial understanding of the problem. Common methods for
task analysis may not help students distinguish between shallow
thinking and insight: breaking a task into hierarchical components
or asking 11 questions about the task (from “Who is going to use
the system” to “What happens when things go wrong”) could eas-
ily be done without considering contextual user data. Therefore,
students can go through the motions of a task analysis without
gaining deeper insight into their problem.

Another student difficulty is telling apart tasks and system fea-
tures. This confusion likely stems from not understanding the dif-
ference between a user-centered and a system-centered view. For
example, a student might propose a task like “When students sign
up to do research, they will create a profile with their skills and
interests.” This phrasing describes an action that a user will take
with the system, but the focus is on the features of a specific sys-
tem instead of the steps required for the user to achieve their goal.
While the instructor can emphasize that tasks should be phrased
in a system-independent manner, students may still be confused
about what that means. In the example above, a student could
imagine many different ways of implementing a profile and popu-
lating it with skills and interests. As such, the phrasing may seem
system-independent to the student. Another difficulty may come
when students consider actions associated with technology, such as
email, setting alarms, or registering for classes. Students struggle to
identify the tasks “from a user’s perspective” when, for the students,
the task is intertwined with the system that supports it.

4.2.1 Teaching Strategies Attempted. One way E. Wiese has tried
to counteract this is by presenting task analysis as something that
helps the designer understand and communicate about the problem.
An assigned reading, a blog post about Proflowers, illustrates the
utility of task analysis [4]. By observing and interacting with users
in physical flower shops, the designers realized that the key task
for a person buying flowers was usually not to construct a specific
bouquet but rather to find a bouquet appropriate for a particular
occasion. People who buy flowers are often trying to fulfill a goal
of getting forgiveness, celebrating, or showing care for someone.
However, users may struggle to choose a specific flower that com-
municates their message. Therefore, the designers realized it would
be easier for users to select bouquets from pre-defined categories
based on different occasions (among other design choices). Present-
ing the task in the language of the user, in a way that matches how
the user thinks about their task, is also emphasized in this example.

Eliane S. Wiese, Jason Wiese, Marina Kogan, and Joshua Dawson

While this example seemed understandable to the students, they
had difficulty generalizing from just one story.

To help students distinguish between tasks, goals, and system
features, E. Wiese created online matching questions with feedback.
Students were given a statement, such as the one in above about
creating a profile, and determined if it was a task, goal, or system
feature. The question presented three contexts (buying flowers,
applying for a research opportunity, and selling crafts), with three
statements per context (one each for goal, task, and system feature).
The phrasing for each statement was based on task analyses con-
ducted by previous students. E. Wiese thought the cohort who did
the matching activity conducted better task analyses than their pre-
decessors. However, some groups still struggled in distinguishing
tasks and system features in their projects — even after multiple
rounds of personalized instructor feedback.

4.2.2 ldeas to Try. While the Proflowers story was helpful, it would
be better to have multiple accounts that show the importance of task
analysis for specific designs — effectively, worked examples of task
analysis. A student could analyze the worked examples to identify:
(1) what are the users’ goals (which could be accomplished through
a variety of tasks); (2) what insight about the users’ goals and tasks
was gained through the task analysis; and (3) what features of
the system supported the identified tasks? This kind of analysis
could also help students distinguish between tasks and system
features. As a community, we could gather and share these kinds of
worked examples. One idea for preempting shallow task analyses in
student projects is to have students conduct an initial task analysis
before conducting their contextual inquiries. This exercise could
help students solidify the inquiry’s focus. When analyzing the
data, students could note where their initial ideas were wrong,
incomplete, or oversimplified. Then, students could refine their task
analyses, showing how the tasks changed as a result of user data.

4.3 Contextual Inquiry

A core challenge for students learning contextual inquiry (CI) is
understanding why it is necessary and the value of the method’s
output. Across our experiences, we found that despite explicit in-
struction on these topics, many students did not grasp a basic
understanding of the value of conducting a CI. Even worse, they
do not recognize this shortcoming in their knowledge — they don’t
know what they don’t know — which makes this challenging to
catch and correct. Additionally, since they do not understand the CI
method well, students often allow their own biases into the session;
this can affect the questions they ask during the interview and the
understanding they ultimately gain from the inquiry. If there are
gaps of understanding from the interview, students tend to fill them
based on their intuition, leading to results that miss the point of
the method.

For example, some students use Cls as a way to get a log of user
interactions with an interface. Since they do not yet understand
how they will use this data, they don’t realize that this data is
typically too low level to be helpful. Students also struggle with
the line between inserting themselves into the CIs (e.g., treating
them like interviews) and trying to stay out of the way too much
(e.g., not sharing or checking their interpretation with participants).

Lightweight Methods for Developing Pedagogical Content Knowledge for HCI

Even if students understand the ideas in the abstract, they struggle
to implement them in context.

Some students also misunderstood that they should not be asking
participants to do something other than what they would usually be
doing when completing the task. For example, students sometimes
ask participants to try a new app, service, or process, which is more
akin to a usability test. Other times, students get tripped up by
thinking that if there isn’t software or a tool for the participant to
use, it is not an acceptable setting for conducting a CL.

We propose a specific exercise to combat learning how to conduct
a CI properly. Present a pre-recorded video of a CI. It does not
have to be a perfect demonstration of the method; if it contains
some common missteps, it can help the student critique the good
and bad elements. Have the students write a description of what
happened; this is helpful for the instructor to see misconceptions
of what context or interpretation is. When it is time for students
to execute a practice CI, have them record it. Then they can do
the same exercise again, identifying good and bad CI techniques
from their recording. For our undergraduate HCI course, we had
three assignments surrounding a CI: (1) CI Plan, (2) CI Findings,
and (3) CI Final Report. Having the students communicate their
ideas through the planning, execution, and reflection phases of
conducting a CI made it easier for the course staff to catch any
negative trends, misunderstandings, or misconceptions early in the
process and help the students overcome them.

4.4 Usability Testing

Some common problems students had with usability testing include:
(1) choosing and phrasing tasks; (2) providing the right level of help
during a test; and (3) presenting realistic data through a low-fidelity
prototype.

4.4.1 Choosing and phrasing tasks. A specific, detailed task in a
task analysis demonstrates insight about the problem. In a usability
test, that same task phrasing is often over-specified, artificially
ordered, or phrased in the language of the system. To prevent
this, E. Wiese demonstrates usability testing by starting with a very
broad prompt, such as “How would you use this website to help you
have a worthwhile research experience?” Essentially, the prompt
asks users how they would reach their goal without specifying a
particular task. Even so, in one semester, some groups used tasks
that were not relevant to their participants’ goals. To address this, in
the next offering, E. Wiese required that each task in a usability test
be followed by a “sanity check” to ensure that the task was relevant
to the participant and that the participant found the sample data in
the interface to be realistic. While this requirement seemed to help
many groups check the validity of their tasks, other groups phrased
their sanity checks around the user’s experience with the prototype
(e.g., “was it easy to do that task with our system?”) rather than on
the validity of the selected task.

4.4.2 Providing the right level of help during a test. Students would
step in and give pointers even after readings and lectures that
emphasized not helping participants during a usability test. One
confusion point was identifying if the participant was completely
stuck. While the emphasis of the instruction was on not providing
help, there was a caveat that if the participant was so stuck that the

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

test could not proceed, the team could provide assistance and note
it in their critical incidents as a failure of the system. Students had
difficulty judging when a participant was truly stuck and would
often provide help whenever the participant asked. One idea to
address this could be to show students a video or transcript of a
usability test. At points where the participant seems stuck, students
could answer a multiple-choice question for what the design team
should do next (e.g., provide help, encourage the participant to try
as if the team wasn’t there, or end the test). Only after making a
choice would students be able to see how the test proceeded. This
could be done with an exemplar usability test (to learn from) or a
poorly done test (to critique).

4.4.3 Presenting realistic data through a low-fidelity prototype. Sys-
tems are not just made of interface elements. They also contain
data that users rely on to make their choices. In the course offering
where half of the student teams were assigned to design a system
to support undergraduate research, E. Wiese found that several
teams used data that was meaningless (e.g., lorem ipsum or squig-
gly lines) or unrealistic (e.g., a posting about doing undergraduate
research with a fictional character). One reason may have been
that students were unsure where to find realistic data to present
in their prototype. Another reason, which some students stated
explicitly, was that the data was out of scope for their design be-
cause it was intended to be user-generated (e.g., professors would
post opportunities and students would create applications). This
perspective is system-centered, focusing on interface components
and layouts, rather than user-centered, focusing on the information
that users will need to reach their goals. In the next offering, E.
Wiese explicitly required that realistic data be presented in the
prototypes.

4.5 From Ideating Through Prototyping

From our experience, especially in a classroom environment, stu-
dents all too often have the end goal of class in mind. Knowing
that they would have to produce a final digital prototype, many
groups tried to leap to a specific digital prototype too early in the de-
sign process, skipping critical ideation and paper-prototyping steps.
What they felt was efficiency actually detracted from the course’s
learning objectives and they did not get the full understanding
of the advantages and differences between a sketch, low-fidelity
prototype, and high-fidelity prototype. However, it is hard to take
a group that went to digital early and tell them they must go back
to paper. Next time we will establish clear guidelines in the rubric
to ensure the proper level of granularity is enforced so the students
can learn the value of each technique.

A student’s bias toward a specific design can also limit ideation.
Since they have a particular implementation in their mind, they
feel that sketching and paper prototypes are just busywork they
need to complete before moving forward. Since they already have
a plan, they are not using the tools taught in the classroom to
brainstorm, communicate, and collaborate over multiple ideas. We
tried to prevent this by forcing students to develop multiple ideas,
identify radically different ones, and explain them. It’s hard to make
students explore — or convince them there are more options — aside
from doing the thinking for them.

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

In a previous semester, students didn’t iterate on their prototypes
enough because they scheduled usability tests back to back. As a
course staff, we can prevent this by requiring separate deadlines for
each test and revisions to the prototype in response. Students also
don’t know what they are missing with high-fidelity prototypes.
They feel it doesn’t affect the testing because they don’t see the
difference, and there is no way to prove it. We found the only way
to combat this is with targeted course staff feedback based on the
student’s reflection of their usability test.

5 INSTRUCTIONAL PRACTICES FOR
DEVELOPING PCK

Our everyday teaching practices can help us develop PCK. When
we examine student work, we look for evidence of understanding
and misconceptions. When we change a lesson plan in response to
a common incorrect answer, we create instruction that is targeted
to our newfound PCK. To make this process more efficient for
ourselves and more useful for our community, we just need to
document our steps along the way.

Our PCK comes from examining students’ ideas about HCI in
light of our instruction. We gather those student ideas through our
assessments. Therefore, the design of our learning goals, instruction,
and assessments affect the kinds of PCK we will gain. Our attitudes
will also affect how we develop PCK. When looking at student
work and asking ourselves, “how did they not understand that?”
it can be tempting to answer by blaming the students (e.g., they
didn’t study enough) or ourselves (e.g., I'm just a bad teacher). A
blame-focused answer will never yield useful PCK. Instead, our
follow-up questions should focus on identifying the knowledge,
skills, and attitudes that are missing or misaligned. The depth with
which we can ask these questions will depend on the format and
quality of our assessments. In particular, E. Wiese found two types
of self-reflection activities to be especially useful for PCK:

5.0.1 Design Process: Initial Thoughts and Reflection. In the first
week of class, students propose what steps they would take to de-
sign a specific new technology or improve and existing one (e.g.,
to improve a university website). Students are prompted to con-
sider specific issues, including what information they need about
their users, how they will get that information, and what steps
they would take between getting an initial idea and implement-
ing the final design. At the end of the semester, students critique
their initial response, explaining which parts of their thinking they
still agree with and what they have changed their minds about.
The pre-test shows that most students gravitate to surveys to get
information about their users, do not consider brainstorming or
exploring multiple ideas, and do not plan for user testing until
a functional prototype is ready. The pre-test can reveal miscon-
ceptions about the design process before the semester starts. The
reflection afterward can show what high-level ideas the student
finds important at the end.

5.0.2 Reflection on Specific Methods. For the key HCI methods in
the course, students practice the method and then write a reflection.
In these reflections, students identify instances when they used
the methods well and when their usage could have been improved.
For example, for CI, students choose from different categories (e.g.,

Eliane S. Wiese, Jason Wiese, Marina Kogan, and Joshua Dawson

context, interpretation, focus, etc.) and note when their inquiry
correctly demonstrated that aspect of the method, and when it did
not. Scoring is based on the accuracy of their self-critique, allowing
students to make mistakes in their initial use of a method but earn
full points on their final understanding of it. These assessments
show us what students are learning about the methods (in contrast
to what they are learning about their users).

Open-ended questions where students generate an answer from
scratch are often thought to be the gold standard of assessments.
For example, to assess if students can introduce a usability test to
a participant in a ethical manner and yield valid data, we could
ask the students to write a script. However, we may still not get a
complete picture of students’ understanding (e.g., a student may
write something correctly, but believe that alternative options are
equally good). An alternative is to use critique questions, where
students are given a script and asked what was done well and what
should be improved. That way, the instructor can target specific
concepts and ensure that all students engage with them. However,
in both cases, students are still generating text (either a script or a
reasoned critique of a script), which is time-consuming to grade.

Fortunately, research on HCI pedagogy can guide us in creat-
ing informative multiple-choice questions [12]. Multiple choice
questions are often thought to be easier than open-response and
to be ineffective for assessing critical thinking. Wang et al. de-
signed multiple-choice questions with options based on past stu-
dents’ correct answers and misconceptions [12]. In a controlled
in-vivo experiment, the multiple-choice questions were just as dif-
ficult as the matched open-response questions, and answers for
the open-response questions used ideas and phrasings similar to
the multiple-choice options. Luckily for us, the path from an initial
set of open-response answers to an easy-to-grade multiple choice
question is the same path we walk to develop PCK: explore student
thinking, identify types of misconceptions, and determine which
ones are common.

We can develop PCK by conducting action research in our own
classrooms. For assessment of new topics, we can use open-response
questions to elicit a range of student ideas. For topics we have taught
before, we can generate multiple choice questions from the previous
year’s open responses. If our assessments reveal extensive misun-
derstandings, we can deploy similar multiple-choice questions after
the targeted instructional activities (to tell us how effective the
instruction was). Keeping and sharing notes on our process can
help us anticipate student ideas, point us to new teaching strategies
to try, and save us from approaches that others have found to be
less effective.

6 CONCLUSION: PCK FOR ALL

Any of us can try this approach for developing PCK. Reflect on
your teaching. What was the most complex concept to get across?
Where did students have the lowest scores on their projects or
exams? When you gave partial credit, what elements were students
most likely to miss? Look at your student course feedback if you
have it. What did students complain about? All of these data sources
can be foundations for finding PCK. The key to looking for PCK
in this kind of data is to look for knowledge gaps, misconceptions,
and unhelpful perspectives. While it is tempting (and sometimes

Lightweight Methods for Developing Pedagogical Content Knowledge for HCI

even accurate) to explain students’ difficulties with lack of effort
on their part, that line of reasoning doesn’t lead to developing our
own PCK or to actionable improvements to instruction. You can do
all of this alone, but it’s more fun with friends. Then report back
and tell us what you found.

We can develop PCK as a community by (1) reflecting on our own
experiences, (2) trying out new ideas that we develop responding
specifically to our growing PCK, and most importantly, (3) sharing
our techniques across the community. We also need to make our
assessments informative for PCK and not be too burdensome for
students to complete or for the course staff to grade. Developing
PCK as a community should be a rewarding and useful activity.
There is no risk; you can try this at home! PCK should be developed
for all conceptual levels, whether to influence overall attitudes
about HCI as a field to the fine details of conducting a usability test.
Developing PCK goes hand in hand with individual improvement
to our teaching methods and materials. Sharing what we know with
others does take additional effort; it requires reflection, refinement,
and communication. But through collaboration, we can significantly
improve the quality of instruction and our student’s understanding.
Let’s do it together!

REFERENCES

[1] Ruha Benjamin. 2021. Which Humans? Innovation, Equity, and Imagination in
Human-Centered Design. https://www.youtube.com/watch?v=kDcz44ifdQw

EduCHI’22, April 30-May 12022, New Orleans, LA, USA

[2] David Blazar. 2018. Validating Teacher Effects on Students’ Atti-
tudes and Behaviors: Evidence from Random Assignment of Teachers
to Students. Education Finance and Policy 13, 3 (07 2018), 281-309.
https://doi.org/10.1162/edfp_a_00251 arXiv:https://direct.mit.edu/edfp/article-
pdf/13/3/281/1692704/edfp_a_00251.pdf

[3] James Fogerty. 2015. CSE 440 Introduction to HCIL. https://courses.cs.washington.

edu/courses/cse440/15au/index.html

Intuitive Design Group. 2021. proflowers.com A Case Study in UX. https:

//www.intuitivedesign.com/proflowers-story

[5] Jane C. Hu. 2020. Online Test Proctoring Claims to Prevent Cheating. But at
What Cost? Slate (October 2020). https://slate.com/technology/2020/10/online-
proctoring-proctoru-proctorio- cheating-research.html

[6] Robin Kimmerer. 2013. Braiding Sweetgrass: Indigenous Wisdom, Scientific Knowl-
edge and the Teachings of Plants. Milkweed Editions, Minneapolis.

[7] Amy Ko. 2019. 21st Century Grand Challenges in Computing Education. https:
//www.youtube.com/watch?v=mjX3yLPKjvE

[8] Robertas Lisickis. 2021. Modern Problems Require Modern Solutions: 8 Y.O. Skips

Online Classes For 3 Weeks Using A Zoom ‘Hack’. Bored Panda (February 2021).

https://www.boredpanda.com/8-year-old-zoom-school-exploit-story-twitter

Alannah Oleson, Meron Solomon, and Amy J Ko. 2020. Computing Students’

Learning Difficulties in HCI Education. In Proceedings of the 2020 CHI Conference

on Human Factors in Computing Systems. Association for Computing Machinery,

New York, NY, USA, 1-14.

ProctorU. 2022. https://www.proctoru.com/

Lee S. Shulman. 1986. Those Who Understand: Knowledge Growth in Teach-

ing. Educational Researcher 15, 2 (1986), 4-14. https://doi.org/10.3102/

0013189X015002004 arXiv:https://doi.org/10.3102/0013189X015002004

Xu Wang, Carolyn Rose, and Ken Koedinger. 2021. Seeing Beyond Expert Blind

Spots: Online Learning Design for Scale and Quality. In Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI 21).

Association for Computing Machinery, New York, NY, USA, Article 51, 14 pages.

https://doi.org/10.1145/3411764.3445045

[4

[o

==
=S

[12

https://www.youtube.com/watch?v=kDcz44ifdQw
https://doi.org/10.1162/edfp_a_00251
https://arxiv.org/abs/https://direct.mit.edu/edfp/article-pdf/13/3/281/1692704/edfp_a_00251.pdf
https://arxiv.org/abs/https://direct.mit.edu/edfp/article-pdf/13/3/281/1692704/edfp_a_00251.pdf
https://courses.cs.washington.edu/courses/cse440/15au/index.html
https://courses.cs.washington.edu/courses/cse440/15au/index.html
https://www.intuitivedesign.com/proflowers-story
https://www.intuitivedesign.com/proflowers-story
https://slate.com/technology/2020/10/online-proctoring-proctoru-proctorio-cheating-research.html
https://slate.com/technology/2020/10/online-proctoring-proctoru-proctorio-cheating-research.html
https://www.youtube.com/watch?v=mjX3yLPKjvE
https://www.youtube.com/watch?v=mjX3yLPKjvE
https://www.boredpanda.com/8-year-old-zoom-school-exploit-story-twitter
https://www.proctoru.com/
https://doi.org/10.3102/0013189X015002004
https://doi.org/10.3102/0013189X015002004
https://arxiv.org/abs/https://doi.org/10.3102/0013189X015002004
https://doi.org/10.1145/3411764.3445045

	Abstract
	1 Introduction: Why PCK for HCI?
	2 Method: You Can Try This At Home
	3 Attitudes and Perspectives
	3.1 We can help students adopt new perspectives
	3.2 Perspectives interact with knowledge and skills

	4 Knowledge and Skills
	4.1 Problem vs. Solution
	4.2 Task Analysis
	4.3 Contextual Inquiry
	4.4 Usability Testing
	4.5 From Ideating Through Prototyping

	5 Instructional Practices for Developing PCK
	6 Conclusion: PCK for all
	References

